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Abstract—Conventional compressive sampling methods cannot
efficiently exploit structured sparsity for sampling multidimen-
sional signals like video sequences. In this paper, we propose a fully
decomposable compressive sampling model that adopts the Kro-
necker product framework to exploit the structured sparsity span-
ning multidimensional signals. It enables efficient sampling in a
progressive fashion by retaining the block-diagonal feature of Kro-
necker products. A synthetic sensing matrix is developed for joint
optimization over sampling signals with multiple dimensions. In-
stead of adjusting global Gram matrix, separable minimization of
mutual coherence in multiple dimensions is jointly formulated for
a stable recovery with enhanced convergence rate. Sampling rate
allocation is considered to improve recovery performance based
on the decomposable compressive sampling. The proposed model
is employed in video acquisition for temporal sparsity along mo-
tion trajectory. Experiment results show that the proposed model
can improve the recovery performance with a reduced number of
necessary samples in comparison to the state-of-the-art methods.

Index Terms—Sparse representation, matrix optimization, com-
pressive video sampling, video acquisition.

I. INTRODUCTION

MULTIMEDIA signal acquisition usually requires a large
number of sensors to sample the raw data. Shannon’s

celebrated theorem demonstrates that traditional sampling re-
quires a minimum rate twice the highest frequency of the signal,
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namely the Nyquist rate, to achieve sufficient sampling without
loss of any information. Therefore, traditional data acquisition
systems commonly employ a sample-then-compress framework
to acquire signals. However, most signals of interest have con-
cise (sparse) linear representations with respect to some basis,
e.g. Fourier or wavelet basis, which means that the transformed
(compressed) coefficients equal or close to zero could be dis-
carded. Recognizing the deficiency of directly sampling raw
data, compressive sampling (CS [1], [2]) has been developed to
make sub-Nyquist sampling by recording fewer projections into
an incoherent set of measurement vectors.

The compression-into-sampling system can generate irregular
and inadequate measurements conditioned on the actual sparsity
of signals, so that the necessary sampling rate can be substan-
tially reduced. Since exact reconstruction via nonlinear recovery
regularized by �0 quasi-norm is an NP-hard problem, the �1 min-
imization [3] was commonly adopted as a tractable alternative
for sparse recovery. Its recovery performance is demonstrated
to be guaranteed under the constraints of the null space prop-
erty (NSP [4]) and the restricted isometry property (RIP [5]) for
measurement vectors. However, conventional CS [6], [7] relies
on a vectorized representation for the whole signal of interest,
which would obscure the intrinsic structure of multidimensional
signals. As a result, these methods are restricted in applications
for multidimensional signals, e.g. hyperspectral imaging [8]–
[10], magnetic resonance imaging (MRI [11]), and image/video
acquisition [12].

Recently, compressive sampling has been inspired to investi-
gate high-speed spatial and temporal imaging resolution with a
reversed-complexity manner, which would favor the ubiquitous
and interactive multimedia access for increasing mobile commu-
nication. To facilitate a distributed CS protocol, the sparsifying
basis and synthetic sensing matrix for sampling are optimized
for compact representation of varying sparsities. Traced back to
[13], compressive imaging was first employed into video rep-
resentation and coding based on a single-pixel camera model,
where 3-D wavelet transform was adopted to improve the frame-
by-frame reconstruction with its 2-D counterpart. In [14], an
iterative multiscale framework was developed to exploit mo-
tion estimation and compensation for enhanced sparsity at finer
scales in the 3-D wavelet domain. Cossalter et al. [15] combined
compressive sensing and the information obtained by tracking
the motion objects. To improve sampling efficiency, each frame
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was further segmented into non-overlapping blocks which were
estimated with a linear combination of blocks in previous frames
[16], [17]. For distributed compressive video sensing, an effi-
cient modified gradient projection algorithm was developed for
sparse reconstruction at the decoder [18]. To further reduce ran-
dom measurements, Ma et al. [19] adopted a pseudorandom
downsampling of the 2-D Fourier transform for fast online en-
coding of each frame and the approximate message passing
approach for offline decoding with rapid convergence.

To improve the recovery performance, motion estimation and
compensation were introduced into the block-based CS frame-
work. In essence, a video sequence was decomposed into ref-
erence frames and the other CS frames reconstructed based on
adaptive bases extracted from adjacent reconstructed reference
frames. Liu et al. [20] developed an adaptive block-based CS
framework for video, which classified blocks with their inter-
frame correlations and texture region. Mum et al. [21] improved
the quality of reconstructed frames by combining the motion-
compensated prediction from the reference frame and the re-
covered residual with the smooth projected Landweber recon-
struction. Later, this method was extended to multi-hypothesis
prediction based on multiple reference frames [22]. In [23],
Karhunen-Loève transform (KLT) bases were adopted to ex-
ploit long-term inter-frame correlations, which adaptively rep-
resented sparsities for each block based on reference frames.
These methods achieved a potential gain over conventional
video acquisition methods. However, they cannot provide theo-
retical tractability and performance guarantees, as explicit uti-
lization of motion information hampers the derivation of an
adaptive sensing matrix to ensure strict sparsity property for the
spatio-temporal correlations.

Kronecker product framework was first introduced for mul-
tidimensional signals in Kronecker compressive sensing (KCS
[24]), where spatio-temporal sparsity was jointly modeled with
the Kronecker product of a 2-D spatial sparsifying basis and 1-D
temporal sparsifying basis. KCS achieved the stable recovery for
compressive video sampling with a block-diagonal sensing ma-
trix synthesized by sensing matrix and full-rank identity matrix
for spatial and temporal dimension. Thus, the recovery perfor-
mance is degraded in KCS due to its redundant sampling in
temporal dimension. To improve the recovery efficiency, multi-
way compressed sensing (MWCS [25]) developed a two-step
process to utilize the Kronecker sensing structure, including
fitting a low-rank model in compressed domain and per-mode
decompression. However, MWCS is an NP-hard problem, as
it heavily relies on tensor rank estimation. Recently, general-
ized tensor compressive sensing (GTCS [26]) was developed
to employ the Kronecker structure for simultaneous acquisition
and representation from all tensor modes, which considerably
reduces the computational complexity for recovery by skipping
the vectorization of video frames and tensor rank estimation.
However, its recovery performance is degraded over the fixed
basis (e.g. 3D DCT basis) due to the error accumulation with
tensor mode continuing.

Furthermore, sensing matrix optimization is not considered
in [24]–[26], which would substantially enhance the CS recon-
struction with derived basis. However, existing optimization

methods [27]–[30] cannot perform efficiently for synthetic
sensing matrix generated by Kronecker products. Tremendous
computation burden is led by iteratively optimizing the sensing
matrix to force the Gram matrix to identity matrix. Considering
the separability of Kronecker matrix, it would be desirable to
design an efficient algorithm based on separable metrics like
mutual coherence.

This paper proposes a fully decomposable compressive sam-
pling model to exploit the structured sparsity in multidimen-
sional signals. The contribution of this paper is two-fold. Firstly,
the proposed model adopts a rank-deficient matrix to improve
compressive sampling in multiple dimensions. Integrating with
the Kronecker product framework, it can achieve a higher com-
pression ratio with a guarantee of recovery performance. Sec-
ondly, the proposed model optimizes the synthetic sensing ma-
trix by jointly minimizing the mutual coherence of the projec-
tion matrix. Decomposable optimization is allowed for sampling
signals with multiple dimensions using sampling rate-distortion
optimization. Given sparsifying basis, the optimized sensing
matrix can achieve both reliable performance and improved
convergence rate in reconstruction.

To validate the efficacy of the proposed model, we employed it
into video acquisition to evaluate its recovery performance under
various sampling rates. It improves the compression ratio with
a guaranteed recovery performance by performing compressive
sampling in both spatial and temporal dimensions. The proposed
model is shown to outperform conventional CS schemes and lat-
est Kronecker product based methods in terms of PSNR and vi-
sual quality. We also evaluated the sensing matrix optimization
and sampling rate allocation scheme, which can effectively im-
prove the recovery performance and computational complexity
based on given number of measurements.

The reminder of this paper is organized as follows. In
Section II, the relevant preliminaries and analysis on Kronecker
compressive sensing (KCS) are introduced. Section III proposes
the fully decomposable compressive sampling model, including
its formulation, upper bound of mutual coherence, stable
recovery and advantages to KCS. Sensing matrix optimization
for fully decomposable CS is developed in Section IV with
a well-designed algorithm for sampling rate allocation. In
Section V, fully decomposable CS is employed into video
acquisition with joint optimization for spatio-temporal sparsity.
Section VI provides extensive experiment results to evaluate
the proposed video acquisition schemes. Finally, we conclude
this paper in Section VII.

II. PRELIMINARIES AND MOTIVATION

In the rest of this paper, we reserve normal symbols to scalar
variables and boldface symbols to vector variables for clarity.
Table I specifies the frequently-used variables in this paper.

A. Compressive Sampling

A signal x ∈ RN is said to be K-sparse over the basis Ψ,
if x can be decomposed by Ψθ with ‖θ‖0 = K � N . Accord-
ing to CS theory, the K-sparse signal x can be exactly recon-
structed fromM = O(K log(N/K)) linear projections onto the
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TABLE I
ABBREVIATION TABLE

sensing matrix Φ. Here, the nonadaptive sensing matrix Φ ∈
RM×N is designed to satisfy the incoherent condition with fixed
sparsifying basis Ψ [31]. It has been shown that the independent
and identically distributed (i.i.d.) Gaussian or Bernoulli ran-
dom matrices can facilitate a simple construction of nonadap-
tive sensing matrices [32]. The signal x is recovered by finding
the sparsest vector θ consistent with the measurement vector
y = Φx = ΦΨθ, which can be solved by the �0-minimization
problem [33], [34] or the computationally tractable �1 optimiza-
tion problem.

θ̂ = arg min ‖θ‖1 s.t. ‖y − ΦΨθ‖2 ≤ σ. (1)

Commonly, (1) can be solved through Basis Pursuit [35]–[38]
at the computational complexity of O(N 3).

Compressive sampling relies on the fundamental principle of
incoherent sampling, which makes the sensing matrix Φ and the
sparsifying basis Ψ to be as incoherent as possible. This princi-
ple can be guaranteed by the restricted isometry property (RIP
[5], [39]) under constraints on Φ and Ψ. However, it requires a
combinatorial computational complexity to verify a general ma-
trix D = ΦΨ. Thus, mutual coherence is introduced for more
concrete recovery based on Φ and Ψ [40].

Definition 1 (Mutual Coherence): The mutual coherence of
the orthonormal bases Φ ∈ RN×N and Ψ ∈ RN×N is the max-
imum absolute value for the inner product between elements of
the two bases.

μ(Φ,Ψ) = max
1≤i,j≤N

| (φi, ψj ) |, (2)

Under lower coherence between Φ and Ψ, the signal x can
be recovered by a smaller set of CS samples with less mutual
information.

B. Compressive Sampling for Multi-Dimensional Signals

Compressive sampling for multi-dimensional signals involves
complex models for high-dimensional sparsity. Conventional
(global) CS methods reshape the multi-dimensional signal into
a single 1-D vector without considering the space X spans.

Thus, X is sampled by directly multiplying the 1-D vector with
a global dense matrix Φ.

For multi-dimensional signals, it is critical to find appropri-
ate bases to jointly model the high-dimensional sparsity. One
promising way is to combine the bases for sparsity in various
dimensions with Kronecker product. Here, we define the Kro-
necker product (A ⊗ B)P R×QS of two matrices A and B with
sizes P ×Q and R× S.

A ⊗ B =

⎡
⎢⎢⎢⎣

A(1, 1)B A(1, 2)B · · · A(1, Q)B
A(2, 1)B A(2, 2)B · · · A(2, Q)B

...
...

. . .
...

A(P, 1)B A(P, 2)B · · · A(P,Q)B

⎤
⎥⎥⎥⎦ , (3)

where A(p, q) is the element at p-th row and q-th column
in matrix A. In the Kronecker product framework, a multi-
dimensional sparsifying basis Ψ is constructed under the
assumption that multi-dimensional signal X is sparse or com-
pressible conditioned on basis Ψk along its k-th dimension.
Thus, Ψ can be synthesized with the Kronecker product of Ψk ,
1 ≤ k ≤ E for all the E dimensions of X.

Ψ = Ψ1 ⊗ Ψ2 ⊗ · · · ⊗ ΨE . (4)

Thus, the i-th column ψi of Ψ can be represented by

ψi = ψi11 ⊗ ψi22 ⊗ · · · ⊗ ψiEE , (5)

where ψikk is the corresponding column in sparsifying basis Ψk

for the k-th dimension. It is demonstrated in [41] and [42] that
hyperbolic basis is optimal for (4) among bases derived from
its universality along different dimensions. For example, a 2-D
wavelet transform with basis Ψs and a 1-D wavelet transform
with basis Ψt can sparsely represent an image and a smooth
or piecewise smooth sequence of pixels, respectively. The Kro-
necker product of Ψs and Ψt would construct a hyperbolic
wavelet basis with different degrees of smoothness for each di-
mension [43]. On the contrary, global CS would require multi-
plexing sensors to operate simultaneously along all dimensions,
which are prohibitive and impractical for video acquisition due
to the physical complexity and latency.

Without loss of generality, we consider the signal X of E
dimensions. The mutual coherence of the sensing matrix Φ̂ =
Φ1 ⊗ · · · ⊗ ΦE and sparsifying basis Ψ̂ = Ψ1 ⊗ · · · ⊗ ΨE can
be formulated as

μ(Φ̂, Ψ̂) =
E∏
k=1

μ(Φk ,Ψk ) ≤ min
1≤k≤E

μ(Φk ,Ψk ). (6)

Equation(6) implies that KCS requires less number of samples
than performing CS independently on each dimension (aka,
independent CS) to recover the signals of interest, as μ(Φ̂, Ψ̂)
will not exceed μ(Φk ,Ψk ), 1 ≤ k ≤ E.

To summarize, global CS directly performs compressed
sampling and global reconstruction for the entire signals. How-
ever, it is computationally intensive in practice due to its expo-
nentially increasing data volume and complexity. Independent
CS employs individual compressed sampling and individual re-
construction for each dimension. For multi-dimensional signal
X ∈ RN1 ×N2 ×···×NE , independent CS performs sampling and
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recovery for i = 1, . . . , Nk along the k-th dimension in an iso-
lated manner.

vec (Yi) = Φkvec (Xi) = ΦkΨk θi,

where Xi ∈ RN1 ×Nk −1 ×Nk + 1 ×···×NE and Φk ∈
RMk ×(N1 ·Nk −1 ·Nk + 1 ···NE ) . For example, independent CS
separately handles each frame of video sequences with Φt

and Ψt . Thus, it degrades the sampling and recovery perfor-
mance by neglecting the temporal sparsity. KCS provides a
tractable alternative to balance the complexity and perfor-
mance for sampling and recovery. It employs the Kronecker
product framework to generate sensing matrix for joint
recovery.

Y = (Φ1 ⊗ · · · ⊗ ΦE )X = (Φ1 ⊗ · · · ⊗ ΦE )

× (Ψ1 ⊗ · · · ⊗ ΨE ) θ.

For compact representation, Φk , k = 2, . . . , E are commonly
set to identity matrices I in KCS. Thus, sampling is not per-
formed along these dimensions. However, KCS cannot suffi-
ciently capture the temporal sparsity in video sequences, as
the identity sensing matrix is adopted for temporal sampling,
as shown in (21). This fact means that the measurements Y
individually sampled from frames F1 , . . . ,FT are redundant
due to the temporal correlations in video sequences. The spa-
tial measurements for adjacent frames could be further clus-
tered with temporal sparsity to reduce the necessary samples for
recovery.

III. FULLY DECOMPOSABLE COMPRESSIVE SAMPLING (FDCS)

Recall the synthetic sensing matrix Φ̂ = Φs ⊗ I in KCS,
where I and Φs can be regarded as factorized sensing matrices
for temporal and spatial dimension, respectively. The identity
matrix I offers complete temporal components, while Φs de-
termines the overall sampling rate by compressing the spatial
measurements. In this section, we propose a general CS frame-
work for multidimensional signals to perform decomposable
sampling in each of its subspaces.

A. Formulation

Consider a multidimensional signal X represented by a union
of E subspaces S1 ,S2 , . . . ,SE , where Si is spanned by the
sparsifying basis Ψi . It is obvious that KCS cannot sufficiently
exploit the sparsity in the multidimensional signals withE ≥ 2,
as its measurements sampled with the full-rank identity matrix
are redundant in the temporal dimension. To develop an efficient
sampling model, we redefine the overall sensing matrix Φ̂ based
on the rank-deficient sensing matrices Φi for Si . The measure-
ments Y are obtained by sampling X based on a Kronecker
product framework.

vec(Y) = (Φ1 ⊗ · · · ⊗ ΦE ) · vec(X), (7)

where Φi is the Mi ×N sensing matrix for Si and M =∏E
i=1 Mi for all the E dimensions, respectively. According to

Fig. 1. An illustrative example for sampling with KCS and the proposed fully
decomposable CS (FDCS) model, where FDCS and KCS are employed on a
3 × 3 × 3 cube extracted from Foremen sequence. It shows that FDCS projects
X into a vector with 8 elements, while KCS requires 4 more samples which can
be clustered due to the temporal redundancy.

[44], (7) can be rewritten in matrix product from.

Y =
E∏
i=1

ΦiVi (X) (8)

where Vi is the vectorization operator for the i-th subspace Si
that X lives in. Consequently, we define the fully decomposable
compressive sampling for multidimensional signal X.

Definition 2 (Fully Decomposable Compressive Sampling
(FDCS)): A multidimensional signal X is called to be fully
decomposed over a union of E subspaces Si , when there ex-
ists sensing matrices Φi and sparsifying bases Ψi , i = 1, . . . , E
satisfying that

Y = ⊗E
i=1ΦiΨiθi , (9)

where θi is the decomposable sparse representation for the pro-
jection of X onto subspace Si .

Here, the transform ΦiΨiθi refers to the measurements cor-
responding to the subspace Si spanned by the sparsifying basis
Ψi . To be concrete, Φi ∈ RMi×N in (8) compresses projection
in subspace Si into a vector ofMi measurements, as it is always
underdetermined for Mi < N . When X is decomposable over
the E subspaces, operation ΦX obtains CS measurements of
X in a progressive fashion based on Φi and Ψi for Si . When
progressively performing compressive sampling from i = 1 to
E, Φi ∈ RMi×N clusters projection of signals at corresponding
position in a partial union S1 ⊗ · · · ⊗ Si−1 of subspaces into an
Mi-tuple vector.

In comparison to KCS, FDCS adopts an underdetermined
matrix Φi instead of the identity matrix I for each subspace,
so that it can simultaneously exploit the structured sparsity of
these subspaces to obtain the compressed measurements Y.
Fig. 1 provides a supporting evidence by employing FDCS and
KCS on a 3 × 3 × 3 cube extracted from Foremen sequence,
respectively. It shows that fully decomposable CS projects X
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into a matrix Y with 8 measurements, while KCS requires
12 measurements to recover the cube. FDCS simultaneously
exploits spatial and temporal correlations to generates fewer
measurements that are randomly distributed.

B. Upper Bound for Mutual Coherence

In this section, we estimate the redundancy of X in the
sense of mutual coherence derived by the FDCS. Given
sensing matrix Φ and sparsifying basis Ψ, the upper bound
of mutual coherence is developed to guarantee the recovery per-
formance with Kronecker product framework. Given sensing
matrix Φ ∈ RM×N , the sampling rate is defined as r = M/N .
In the Kronecker product framework, the sparsifying basis for
X is Ψ̂ = Ψ1 ⊗ · · · ⊗ ΨE . The corresponding sensing matrices
for fully decomposable CS is Φ̂(F ) = Φ1 ⊗ · · · ⊗ ΦE , while Φi ,
i = 2, . . . , E are set to identity matrices I for KCS. In Theo-
rem 1, the mutual coherence for the fully decomposable CS
model is demonstrated to be upper-bounded by the one derived
from KCS.

Theorem 1: Given corresponding sampling rates ri ∈ (0, 1)
for Φi , i = 1, . . . , E, in the fully decomposable CS model and
the overall sampling rate r =

∏E
i=1 ri , under Gaussian random

sampling, with a high probability asymptotically approaching 1,
the mutual coherence μ(Φ̂(F ) , Ψ̂) for FDCS is upper-bounded
by the mutual coherence μ(Φ̂(K ) , Ψ̂) for KCS.

μ(Φ̂(F ) , Ψ̂) ≤ μ(Φ̂(K ) , Ψ̂) (10)

Proof: Please refer to Appendix A. �
The proposed sampling scheme can be viewed as an E-th or-

der CS, which makes FDCS suitable for the common reconstruc-
tion framework. It is well recognized that the mutual coherence
should be made small enough to ensure stable CS recovery. As
is known, the sampling rate of a sensing matrix determines the
coherence with a universal basis, Theorem 1 demonstrates that,
by fixing overall sampling rate, FDCS can guarantee a smaller
mutual coherence in comparison to KCS. This fact implies that
FDCS can achieve better recovery performance based on the
same number of measurements.

On the other hand, rate allocation is another critical factor on
the performance of fully decomposable CS. According to CS
theory, the more sparse a signal is, the less measurements are
required to achieve stable recovery. Thus, the structured sparsity
in the multi-dimensional signals could be better approximated
with measurements properly assigned by fully decomposable
CS. For example, the video sequence is treated as a combina-
tion of spatial and temporal sparsity, where the structure along
temporal dimensions varies with scene changes and object mo-
tions, and the detail information in each frame determines the
structure of spatial dimension. Thus, the recovery performance
can be substantially improved with these structured sparsities.
To balance the stability and performance for reconstructing var-
ious structures, it is reasonable to adaptively select sampling
rates for multidimensional signals based on the statistics of the
subspace they live in.

C. Stable Recovery

In this section, we demonstrate that stable recovery can be
achieved for fully decomposable CS. Given the multidimen-
sional X, denote D = ΦΨ and Di = ΦiΨi the projection dic-
tionary for the multidimensional signals X and its i-th subspace
Si . Assuming that the projection of X onto each subspace Si is
Ki-sparse, we show that there exists D stable for block sparse
vector u with 2Ki-sparse component ui for Si .

Theorem 2 (Stable Recovery): Given projection dictionary
D = D1 ⊗ · · · ⊗ DE , it is stable for arbitrary block-sparse vec-
tor u if and only if its 2Ki-sparse component ui for Si satisfies

Ci
1‖ui‖2

2 ≤ ‖Diui‖2
2 ≤ Ci

2‖ui‖2
2 . (11)

Here, ui = θ1 − θ2 is the difference between two Ki sparse
vector θ1 and θ2 .

Proof: Please refer to Appendix B. �
Theorem 2 implies that the multidimensional signal X can

be recovered when block RIP is maintained for Di in the i-
th subspace Si . For each subspace Si , its vectorized compo-
nent ViX can be separately recovered with �2,1 optimization,
when the number of measurements is greater than the sparsity
Ki . Thus, the multidimensional signals X can be recovered by
progressively combining the vectorized projection from all the
subspaces Si .

In the fully decomposable CS model, we use a series of under-
determined matrices Φ1 , . . . ,ΦE as the sensing matrices corre-
sponding to its subspacesS1 , . . . ,SE . Its measurements enable a
high compression ratio which comes from the extra compressed
temporal dimensions. The fully decomposable CS model can
sufficiently exploit the structured sparsity in multiple subspaces
to derive irregular measurements to eliminate their correlations.
In comparison to KCS, the fully decomposable CS model would
linearly increase the computational complexity for sampling, as
(8) shows that the proposed scheme could progressively sam-
ple each subspace. The proposed sampling structure retains the
feature of traditional CS with the exception of an extra cache to
store temporary frame snapshot. This cache is utilized for the
subsequent second-order CS. Once the samples of fully decom-
posable CS are received, an efficient joint recovery will help us
reconstruct the original 3-D signal.

IV. SENSING MATRIX OPTIMIZATION FOR

MULTIDIMENSIONAL SIGNALS

In compressive sampling, the reconstruction performance de-
pends on the compressibility of the signal, the choice of the
reconstruction algorithm, and the incoherence between sensing
matrix and the sparsifying basis. In this section, we develop an
algorithm to further optimize the synthetic sensing matrix for
reconstruction in the fully decomposable CS model.

A. Minimization of Mutual Coherence

The randomly generated sensing matrix can enjoy additional
benefit from universality, but it cannot perfectly satisfy the in-
coherence requirements. To improve the sampling efficiency
and reconstruction performance, it is promising to develop an
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Fig. 2. Histogram of the absolute values of the off-diagonal entries of the Gram matrix G before the optimization and afterwards.

optimized algorithm to substantially reduce the coherence be-
tween sensing and sparsifying matrices. In the fully decompos-
able CS model, it is imperative to optimize the sensing matrix by
considering the large dimensionality of Kronecker product ma-
trix. It is shown that the optimized sensing matrix with smaller
mutual coherence with a given basis would achieve efficient
sampling and fast convergence.

Recall a related definition of mutual coherence for the pro-
jection dictionary D = ΦΨ.

μ(D) = max
1≤i �=j≤N

| (di)T dj |
‖di‖ · ‖dj‖ , (12)

where di denotes the i-th column of D. The mutual coherence
measures the worst similarity between columns of D. Since pur-
suit techniques cannot distinguish two closely related columns,
the mutual coherence plays an important role on the performance
of recovery algorithms. Projection dictionary with small mutual
coherence tends to achieve incoherent sampling and indicate
a robust reconstruction, while the one with large coherence is
more likely to fail. Suppose that the sparse representation for x0
is in the form of Dα0 with ‖α0‖0 ≤ 1

2 (1 + 1
μ(ΦΨ) ). We have

the following results for �0 and �1 optimization.
1) The vector α0 is necessarily the sparsest one to describe

x0 by solving the �0 optimization.

min
α

‖α‖0 s.t. x0 = ΦΨα (13)

2) The Basis Pursuit (BP) algorithm for approximating α0
guarantees an exact solution to the linear programming problem.

min
α

‖α‖1 s.t. x0 = ΦΨα (14)

Thus, the effect of mutual coherence on the measurements
can be evaluated. The two metrics imply that the upper bound
of ‖α‖0 will be relaxed when μ(ΦΨ) decreases. This relaxed
upper bound allows a wider set of candidate signals to reside un-
der the umbrella of successful CS. It benefits the reconstruction
in two aspects. First, more accurate recovery can be obtained
with the same number of measurements. Second, a fast conver-
gence to the �1 convex optimization can be achieved. Therefore,
the optimization for sensing matrix can be transferred to mini-
mization of the mutual coherence of projection dictionary D.

In practice, to ensure a fair comparison to actual behavior of
sparse representations and pursuit algorithm’s performance, we
replace the worst-case stand-point with an “average” measure
of mutual coherence. To average the significant mutual coher-
ence between columns of D, the Gram matrix G = DT D is
considered for the normalized columns of D.

Definition 3: The t-average mutual coherence of D is

μt(D) =

∑
1≤i �=j≤k (| gij |≥ t)· | gij |∑

1≤i �=j≤k (| gij |≥ t)
, (15)

where gij is the off-diagonal entry of Gram matrix G that
represents the inner product between the normalized columns
di/‖di‖ and dj /‖dj‖.

In [27], Elad developed an algorithm to minimize the μt(D)
where off-diagonal entries in G that are larger than a threshold γ
will be reduced with a shrunk constant and the rank of G would
be subsequentially retained. In practice, the value of μt(D)
would be reduced iteratively. Obviously, its shortcoming lies
in that some small off-diagonal entries in G will be increased
in the process of “artificial” rank retaining and will affect the
RIP of D. To overcome it, a learning method was targeted to
simultaneously optimize sensing matrix and sparsifying basis
by finding Φ that makes the corresponding Gram matrix G
approximate the identity matrix [29].

ΨT ΦT ΦΨ ≈ In . (16)

In Fig. 2, we provide the histograms of the absolute values of off-
diagonal entries in G before and after the optimization. Fig. 2(b)
shows that Elad’s algorithm [27] preserves the ordering of the
absolute entries in G and leads to better distribution, while it
creates some artificial large values entries that are not present
in the original matrix. These artificial values would completely
ruin the worst-case guarantees of the pursuit algorithms. On
the contrary, the learning based algorithm [29] improves the
distribution of off-diagonal entries by orthogonalizing arbitrary
subset of columns in D. It makes all the off-diagonal entries in
G shrink to zero and the diagonal entries approach one. Fig. 2(c)
suggests that [29] provides the best mutual coherence and RIP of
D, as the histogram decreases monotonically. Consequently, the
mutual coherence of corresponding synthetic sensing matrix is
optimized for the Kronecker product in the fully decomposable
CS model.

B. Separable Optimization for Kronecker Product

The separability of Kronecker product enables us to design
a specific algorithm to simplify both the design procedure and
the implementation of the synthetic sensing matrix to reduce
complexity. In this section, we demonstrate the optimality of
the separable minimization for the mutual coherence in the
Kronecker product framework. Thus, the optimized synthetic
sensing matrix can be obtained by making Kronecker products
of the ones optimized separately. Moreover, the optimization
process is also separable, which preserves the block feature of
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Kronecker product matrix and enables fast low-scale matrix
computation.

The mutual coherence of the projection dictionary
in fully decomposable CS is formulated as μ(Φ̂Ψ̂) =
μ(Φ1Ψ1) · · ·μ(ΦEΨE ) for the E subspaces. According to the
theorem, we can obtain the optimal mutual coherence μ(Φ̂Ψ̂)
by calculating the product of E optimized mutual coherence
μ(Φ1Ψ1), . . . , μ(ΦEΨE ). For each subspace Si , Φi is opti-
mized for wavelet basis Ψi . For arbitrary 1 ≤ i, j ≤ E,μ(ΦiΨi)
and μ(ΦjΨj ) are independent with each other. Thus, Φi can be
determined separately to minimize μ(ΦiΨi).

Algorithm 1 is developed to optimize matrix Φ by separately
minimizing mutual coherence for spatial and temporal sensing
matrices based on a fixed sparsifying basis Ψ. Taking the tem-
poral sensing matrix as example, the optimization starts with a
randomly generated Gaussian matrix Φt ∈ RM×N . The optimal
sensing matrix Φ̂t is obtained under the constraint that the Gram
matrix G = ΨT ΦT

t ΦtΨ is close to an N ×N identity matrix.
Rewriting (16) by multiplying both side of G with Ψ and ΨT ,
we obtain

ΨΨT ΦT
t ΦtΨΨT − ΨΨT ≈ 0. (17)

Thus, the optimized sensing matrix Φ̂t minimizes
‖ΨΨT ΦT

t ΦtΨΨT − ΨΨT ‖2
F with the fixed basis Ψ. Let

us define the eigendecomposition of ΨΨT as ΨΨT = QΣQT ,
where Σ = diag(λ1 , . . . , λN ) is the diagonal matrix whose
entries are the eigenvalues of ΨΨT and Q is the orthogonal
matrix composed of corresponding eigenvectors. Therefore,
‖ΣQT ΦT

t ΦtQΣ − Σ‖2
F can be considered as an equivalent

substitution of (17). Substituting W with ΦQ, we formulate
the equivalent minimization problem for the residual.

Ŵ = arg min
W

‖Σ − ΣWT WΣ‖2
F (18)

Thus, Φ̂t = ŴQT minimizes (17).
Denote vi = [λ1Wi,1 , . . . , λNWi,N ] the i-th row of ma-

trix WΣ. We define R = Σ −∑M
i=1 vTi vi and Rj = Σ −∑

i:i �=j v
T
i vi . In the optimization, vj is obtained by minimizing

the residuals ‖Rj − vTj vj‖2
F . Provided that the eigendecom-

position of Rj is Rj = UjΔjUT
j , vj is set to

√
δ1,ju1,j to

eliminate the largest item of residuals. Here, δ1,j is the largest
eigenvalue of Δj and u1,j is its corresponding eigenvector
in Uj . Therefore, Ŵ and Φ̂t can be solved from {vi} and
{λi}. Similarly, we can find the optimal spatial sensing ma-
trix Φ̂s , and consequently, generate the synthetic sensing matrix
Φ̂ = Φ̂s ⊗ Φ̂t .

C. Sampling Rate-Distortion Optimization

Since compressive sensing is separably performed on both
spatial and temporal dimension, sampling rate-distortion per-
formance is optimized for fully decomposable CS. Consider-
ing that Algorithm 1 minimizes ‖ΨΨT ΦT ΦΨΨT − ΨΨT ‖2

F

for the corresponding dimension, we introduce Lagrangian cost

Algorithm 1: Separable Sensing Matrix Optimization.

1: Task: Find the optimal sensing matrix Φ̂i that
minimizes μ(ΦiΨi).

2: Initialization: Sparsifying basis Ψi and a randomly
generated Gaussian matrix Φi ∈ RM×N

3: Eigen-decomposition: ΨiΨT
i = QΣQT

4: Set W = ΦQ
5: Set j = 1;
6: Repeat M times:
7: Compute Rj = Σ −∑1≤i≤M,i �=j v

T
i vi

8: Eigen-decomposition: Rj = UjΔjUT
j

9: Sort the largest diagonal elements δ1,j and its
eigenvector u1,j

10: Update wj using
[λ1wj,1 , . . . , λNwj,N ] =

√
δ1,ju1,j

11: Set j = j + 1
12: Update M components of W = [w1 ,w2 , . . . ,wM ]
13: Compute the optimal Φ̂i = WQT

function L (Φs ,Φt) for optimized sampling rate allocation.

L (Φ1 , . . . ,ΦE ) =
E∑
i=1

ηi‖ΨT
i ΦT

i ΦiΨi − I‖2
F , (19)

where ηi is the Lagrangian multiplier for the i-th subspace Si .
Given the total sampling rate r, we minimize L (Φ1 , . . . ,ΦE )
based on their partial sampling rates r1 , . . . , rE .

Theorem 3: Given arbitrary smooth wavelet bases Ψi for the
i-th subspace Si , with a high probability, there exists optimal
sampling rate allocation ri , 1 ≤ i ≤ E to minimize the upper
bound of recovery error.

Proof: Please refer to Appendix C. �
Theorem 3 implies that there exists an optimal sampling

rate allocation (r1 , . . . , rE ) for the multidimensional signals.
It shows that the sampling rate allocation is related to the spatial
and temporal sparsifying basis, which affects the sparsity Ki ,
1 ≤ i ≤ E of multidimensional signals.

In practice, the heuristic optimization would be prohibitive to
determine sampling rate. To balance the efficiency and recovery
performance, a set of L candidate pairs of spatial and temporal
sampling rates {(r1

1 , . . . , r
1
E ), . . . , (rL1 , . . . , r

L
E )} are predeter-

mined for selection. For each pair (rl1 , . . . , r
l
E ), the Lagrangian

cost function is evaluated for comparison, so that the optimal
synthetic sensing matrix can be derived based on the optimized
allocation scheme. In Section V, we elaborate the sampling rate
allocation scheme for compressive video sampling.

V. APPLICATION INTO VIDEO ACQUISITION

In this section, we employ the proposed FDCS into compres-
sive video sampling. Consider that a video sequence F consists
of T consecutive frames F1 , . . . ,FT with a same resolution
of N = NR ×NC . Let us denote X the N × T matrix for the
video sequence.

X = (vec(F1) vec(F2) · · · vec(FT )) ∈ RN×T . (20)
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Algorithm 2: Sampling Rate-distortion Optimization for
Fully Decomposable CS (FDCS).

1: Task: Determine the optimal sampling rate allocation
from the L candidate pairs {(r1

s , r
1
t ), . . . , (r

L
s , r

L
t )}

2: Initialization: Sparsifying basis Ψt and a randomly
generated Gaussian matrix Φt ∈ RM×N

3: Eigen-decomposition: ΨΨT = QΣQT

4: for l = 1, . . . , L do
5: Estimate Φ̂l

s and Φ̂l
t based on the sampling rates rs

and rt .
6: Derive the cost L(Φ̂l

s , Φ̂
l
t);

7: Set l = l + 1
8: end for
9: Find the minimum in L(Φ̂l

s , Φ̂
l
t), l = 1, . . . , L

10: Generate synthetic sensing matrix Φ̂ = Φ̂l
s ⊗ Φ̂l

t

Here, the i-th column vector vec(Fi) of X is the 1-D vectoriza-
tion of NR ×NC frame Fi . In progressive sampling for video
acquisition [24], the sensing matrix for X is a block diagonal
matrix generated by Kronecker product Φ̂ = Φs ⊗ I, where the
M ×N diagonal sub-block Φs enables sampling of vectorized
frames vec(F1), . . . , vec(FT ).

vec(Y) =

⎡
⎢⎢⎢⎣

y1
y2
...

yT

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Φs 0 · · · 0
0 Φs · · · 0
...

...
. . .

...
0 0 · · · Φs

⎤
⎥⎥⎥⎦ · vec(X), (21)

where Y = (y1 y2 · · ·yT ) is theM × T matrix with yi indicat-
ing the M × 1 measurements for Fi . According to (21), KCS
utilizes the identity matrix I to combine measurements from
each frame, so that the block diagonal matrix Φ̂ samples each
frame Fi into corresponding measurements yi with Φs . By con-
trast, fully decomposable CS considers the synthetic sparsifying
basis defined in (4) to generate Y by jointly optimizing over Φ̂
and Ψ̂ for spatial and temporal dimension.

FDCS simultaneously performs compressive sampling in spa-
tial and temporal dimension for efficient representation of video
sequences. In comparison to KCS, temporal sensing matrix Φt

is adopted for structured sparsity along the motion trajectory.
Sampling rate allocation scheme is developed to assign sam-
pling rates to spatial and temporal dimensions. Algorithm 2 is
adopted to adaptively estimate spatial and temporal sensing ma-
trices and the cost is derived based on the estimated synthetic
sensing matrix. Sensing matrix for each dimension is optimized
according to Algorithm 1.

Remarkably, the block-diagonal structure is reserved in the
product ΦsXΦT

t , which means that the fully decomposable CS
model satisfies the progressive sampling for video acquisition.
Furthermore, fully decomposable CS can also obtain measure-
ments separably in spatial and temporal domain with existing
hardware implementations of CS imaging systems [45], [46]
with separable sensing devices. According to (8), the temporal
sensing can be implemented similarly to the spatial sensing.
Once the 2-D spatial frames are compressively sensed and tem-

Fig. 3. The measurements comparison between KCS and fully decompos-
able CS (FDCS) in different video sequences. The measurements obtained by
KCS are redundant along the horizontal direction (temporal dimension), as pix-
els with similar gray-scale values are randomly distributed in the compressed
columns (spatial dimension) but located in the same row. By contrast, FDCS
generates less measurements randomly distributed in both the horizontal and
vertical directions, which implies that the spatial and temporal correlations are
simultaneously exploited during the sampling.

Fig. 4. (a) The reconstruction performance (dB) obtained by independent CS,
KCS and fully decomposable CS under r ∈ [0.20, 0.40] and rt = 0.6, respec-
tively; (b) The reconstruction performance (dB) obtained by fully decomposable
CS under r ∈ [0.20, 0.45] and rt = 0.45, 0.60, and 0.75, respectively.

porally stored, the DMD (digital micromirror device) is used
to linearly combine spatial measurements at corresponding po-
sitions like a second-order CS. In Fig. 3, FDCS and KCS are
evaluated over various video sequences. The measurements ob-
tained by KCS are redundant on the temporal dimension (hori-
zontally), as they are similar in the same row.

In Fig. 4(a) and 4(b), we provide examples for sampling
Akiyo and Foreman sequences with various allocation of spatial
and temporal sampling rates. Fig. 4(a) shows the sampling-rate-
distortion performance for Akiyo sequence with a resolution of
128 × 128 × 128 with the overall sampling rate r varying in
the interval [0.20, 0.40]. The temporal sampling rate rt is fixed
at 0.6. It shows that FDCS outperforms KCS and independent
CS by a gain of 3–8 dB in PSNR. In Fig. 4(b), we fix the
overall sampling rate and compare the recovery performance
of the proposed FDCS model with various temporal sampling
rates. The Foreman sequence features scene movement, which
is reflected in sharp changes in the value of each pixel across
frames, so that it requires more temporal measurements. The
best recovery is achieved with rt = 0.75.

VI. EXPERIMENTAL RESULTS

To evaluate the proposed fully decomposable CS (FDCS)
model in video acquisition, we compare it with the state-of-the-
art CS schemes in terms of recovery performance and analyze
the influence of sensing matrix optimization. We also discuss the
optimal configuration of rate allocation for various sequences.
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Fig. 5. Visual quality for recovered frames obtained by various CS schemes,
including independent CS, KCS, GTCS and the proposed fully decomposable
CS (FDCS). From left to right: Original, Independent CS, KCS with r = 0.35;
GTCS with r = 0.35 and rt = 0.75; FDCS with r = 0.35 and rt = 0.75.

The Daubechies-8 wavelet was used to form sparsifying ba-
sis, and appropriate random matrices were set as the initial
temporal and spatial sensing matrices. Referring to the matrix
structure, we crop the standard video sequence around the cen-
ter to have frames of size 128 × 128 pixels (approximate QCIF
resolution) and 256 × 256 pixels (approximate CIF resolution).
To appropriately utilize the temporal sparsity within hardware
capacity, 128 frames are selected to form a test sequence. In
the experiments, the basis pursuit (BP) solver is used to recover
the original video signals. All the experiments are executed on a
workstation with 3.3-GHz CPU and 12-GB RAM. It is noted that
we develop the proposed algorithm over the MATLAB toolbox
at http://dsp.rice.edu/kcs.

A. Recovery Performance

Firstly, we evaluate various CS-based sampling schemes on
the cropped video cubes, including the independent CS recovery
[9], the GTCS [26], the KCS [24] and the proposed fully de-
composable CS (FDCS) model. For the independent recovery,
CS independently obtains and recovers measurements for each
individual frame with the sparsifying basis Ψs . The 3D-DCT
basis is used for GTCS. For KCS and FDCS, the same Kro-
necker product (hyperbolic) wavelet basis is adopted. It is worth
mentioning that KCS only utilizes a spatial-compressed synthet-
ics matrix to reconstruct signals from the entire measurements,
while the FDCS takes advantage of optimized holo-compressed
sensing matrix Φ̂ = Φ̂s ⊗ Φ̂t to sufficiently exploit the spatio-
temporal correlations in video sequences. The total sampling
rate (ratio of measurements and pixels) is set as r = 0.35. For
the FDCS model, the temporal sampling rate rt is selected as
0.75 to maximally envelop the temporal structures of all test
sequences. Figs. 5 and 6 show the reconstructed frames for in-
dependent CS, GTCS, KCS, and the proposed FDCS model
over test sequences with various resolutions, including Fore-
man, Akiyo, Mother and Daughter, and Hall. In comparison to
KCS, GTCS and CS, the proposed FDCS model achieves best

Fig. 6. Visual quality for recovered frames obtained by various Kronecker
product based schemes, including KCS, GTCS and the proposed fully decom-
posable CS (FDCS). From left to right: original, GTCS, KCS, and FDCS.

visual quality for recovered frames over all the test sequences.
Its improvement on recovery owes to the availability of extra
temporal compression, which tends to preserve more details
with the same number of measurements.

B. Sensing Matrix Optimization

This section validates the optimized sensing matrix against
the randomly generated matrix in FDCS. The sensing matrix
optimization algorithm is evaluated in terms of the PSNR of
reconstructed frames and time cost. Gaussian random matrix
Φ and optimized sensing matrix Φ̂ are adopted to collect fully
decomposable CS measurements under various sampling rates,
respectively. Here, the optimized matrix Φ̂ is calculated from
Φ with Algorithm 1. The mutual coherence of the random and
optimized matrices is 0.092 and 0.055, respectively. Table II
gives the detailed recovery quality and computational complex-
ity of FDCS with both the optimized and the randomly generated
sensing matrix. Remarkably, the optimized matrix achieves bet-
ter recovery performance as well as reduces about 80% of the
computational complexity in comparison to the random matrix.
This fact coincides with the conclusions in Section IV.

C. Sampling Rate Allocation

Finally, we discuss the sampling rate allocation for the pro-
posed FDCS model. Instead of full sampling along the tempo-
ral dimension in KCS, FDCS sufficiently exploits the temporal
correlations to further compress the temporal components and
achieve higher sampling efficiency. Therefore, it is reasonable
to consider rate allocation for the spatial and temporal sam-
pling to obtain optimal overall performance. As mentioned in
Section II, the hyperbolic basis outperforms any other basis for
its universality in various dimensions, which means that we
can also construct appropriate sensing matrix according to the
sparsity along both spatial and temporal dimensions.



612 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 3, FEBRUARY 1, 2018

TABLE II
RECOVERY PERFORMANCE FOR FULLY DECOMPOSABLE CS (FDCS) WITH OPTIMIZED AND RANDOM SENSING MATRIX UNDER VARIOUS SAMPLING RATES

Fig. 7. Recovery performance for fully decomposable CS (FDCS) under var-
ious sampling rates. The overall sampling rates for the first and second rows are
0.25 and 0.45, respectively. (a): Original; (e): KCS; (b)(f): FDCS with rt =
0.45; (c)(g): FDCS with rt = 0.6; (d)(h): FDCS with rt = 0.75.

Fig. 8. Recovery performance for full decomposable CS (FDCS) under vari-
ous sampling rates. The overall sampling rates for the first and second rows are
0.25 and 0.45, respectively. (a): Original; (e): KCS; (b)(f): FDCS with rt =
0.45; (c)(g): FDCS with rt = 0.6; (d)(h): FDCS with rt = 0.75.

Intuitively, the number of measurements would determine
the quality of reconstruction in CS. However, we can notice
in Fig. 7(d) and (f) that lower sampling rate could help achieve
better reconstruction. To achieve the best performance in FDCS,
the allocation of sampling rates for different dimensions should
follow the distribution of sparsity, as shown in Figs. 7–10. For

Fig. 9. Recovery performance for fully decomposable CS (FDCS) under var-
ious sampling rates. The overall sampling rates for the first and second rows are
0.25 and 0.45, respectively. (a): Original; (e): KCS; (b)(f): FDCS with rt =
0.45; (c)(g): FDCS with rt = 0.6; (d)(h): FDCS with rt = 0.75.

Fig. 10. Recovery performance for fully decomposable CS (FDCS) under
various sampling rates. The overall sampling rates for the first and second rows
are 0.25 and 0.45, respectively. (a): Original; (e): KCS; (b)(f): FDCS with rt =
0.45; (c)(g): FDCS with rt = 0.6; (d)(h): FDCS with rt = 0.75.

example, more measurements are required for the temporal di-
mension, as there exist sharp changes across frames in Foreman
sequence. In Fig. 7, the reconstruction quality in (c)(g) with
larger rt is better than (b)(f) with the same overall sampling rate
r. In contrast to the Foreman sequence, the Akiyo sequence is
much more smooth along the temporal dimension. Thus, small



DAI et al.: FULLY DECOMPOSABLE CS WITH JOINT OPTIMIZATION FOR MULTIDIMENSIONAL SPARSE REPRESENTATION 613

Fig. 11. Reconstruction performance for fully decomposable CS (FDCS), GTCS, KCS, and independent CS over four sequences with sizes of 128 × 128 × 128.

Fig. 12. Reconstruction performance for fully decomposable CS (FDCS),
GTCS, KCS, and independent CS over two sequences with sizes of 256 ×
256 × 128.

Fig. 13. Sampling-rate-distortion curves for test sequences Akiyo, Foreman,
Hat and Mother and Daughter under overall sampling rate 0.4.

rt can also guarantee an accurate reconstruction, as shown in
Fig. 8.

Figs. 11 and 12 provide the sampling rate-distortion curves
obtained by FDCS, GTCS, KCS, and the independent CS for
test sequences with various resolutions. These curves are ob-
tained with total sampling rates ranging from 0.2 to 0.45. For
fully decomposable CS and GTS, the temporal sampling rates
are set to 0.45, 0.6 and 0.75, respectively. To sufficiently ex-
ploit temporal correlations, sensing matrix optimization is also
employed into fully decomposable CS. Figs. 11 and 12 show
that FDCS outperforms the state-of-the-art methods, especially
in the regions of low sampling rates (r < 0.3). Remarkably,
FDCS performs better under the situations that temporal sam-
pling is sufficient. In comparison to the Kronecker product-
based method KCS, FDCS achieves a noticeable gain (up to
8 dB) in PSNR. Fig. 13 provides the sampling-rate-distortion
curves for various test sequences with sizes 128 × 128 × 128
and 256 × 256 × 128 under the overall sampling rate 0.4. It
shows that the optimal sampling rate allocation for sequences
would vary due to the various statistics for spatial and temporal
dimension, i.e. sparsity. For example, recovery performance of
Foreman raises with the growth of temporal sampling rate, as
local motion of textures (i.e. the region of face) would require
more measurements for perfect recovery.

VII. CONCLUSION

This paper proposes a novel fully decomposable CS (FDCS)
for highly compressed multidimensional signals. With the struc-
tured sparsity, FDCS preserves a higher sampling efficiency by
further compressing projected signals lived in multiple sub-
spaces. Due to the block feature of Kronecker product, sam-
pling rate allocation is developed to derive the overall sensing
matrix for optimized reconstruction performance over the mul-
tiple subspaces. With the knowledge that projection matrix with
low mutual coherence would lead to lower reconstruction errors,
mutual coherence for each subspace is minimized by optimizing
its sensing matrix based on the projection dictionary of FDCS.
The mutual coherence is proved to be divisible, which makes it
possible for obtaining the optimal synthetic sensing matrix from
each dimension in a fast low-scale matrix computation. For val-
idation, the proposed FDCS is employed in compressive video
sampling. Experiments results show that the proposed scheme
substantially improves the reconstruction accuracy and further
reduces the necessary number of samples.

APPENDIX A
PROOF OF THEOREM 1

We begin with E = 2. In the Kronecker product framework,
the mutual coherence for synthetic sensing matrix Φs ⊗ Φt and
the sparsifying basis Ψs ⊗ Ψt can be decomposed by

μ(Φs ⊗ Φt ,Ψs ⊗ Ψt) = μ(Φs ,Ψs) · μ(Φt ,Ψt). (22)

Thus, we consider the mutual coherence for spatial and temporal
dimension, respectively.

Without loss of generality, we assume that the corresponding
spatial sensing matrices Φ(F )

s and Φ(K )
s for the fully decom-

posable CS and KCS models are the selected sub-matrices of
N ×N orthonormal bases Φ̃s . Given M ×N and Ms ×N
spatial sensing matrix Φ(K )

s and Φ(F )
s , μ(Φ(K )

s ,Ψ(K )
s ) and

μ(Φ(F )
s ,Ψ(F )

s ) for the fully decomposable CS and KCS model
satisfy with probability at least 1 − 5e−τ that [24], [31], [47]

μ(Φ(F )
s ,Ψs)

μ(Φ(K )
s ,Ψs)

≤
√
rN(N − 1)

1 − r
· rsCKτ log (τK logN)

× (logK)2 .

Here, C is a fixed constant. For simplicity, we denote
Δ(K, τ,N) =

√
N(N − 1) ·Kτ log (τK logN) (logK)2 .

Similarly, we assume that fully decomposable CS select
Mt column vectors from the T × T orthonormal bases Φ̃t to
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generate the temporal sensing matrix Φ(F )
t . Thus, the temporal

mutual coherence for fully decomposable CS is derived as

μ(Φ̃t ,Ψt) = max
1≤i,j≤T

∣∣∣〈φ̃it , ψjt 〉
∣∣∣

= max
1≤i,j≤T

∣∣∣∣∣
∑

1≤k≤T
φ̃t(i, k)ψt(k, j)

∣∣∣∣∣ .

Given Ψt , we denote μ̄ = max1≤i,j≤T |ψt(i, j)| the mutual co-
herence μ(I,Ψt) for KCS. When the elements of Φ̃t obey a
normal distribution having mean zero and variance 1/T , we can
find that 〈φ̃t , ψt〉 ∼ N (0, 1/T ), as ψt is an orthonormal vector.
According to [48], we can obtain that

Pr

{ ∣∣∣〈φ̃t , ψt〉
∣∣∣ ≤

√
1 − r

r
· μ̄

rsΔ(K, τ,N)

}

≥ 1 − 2 exp
(
− (T − 2)(1 − r)μ̄2

2rr2
s2(K, τ,N)

)
.

As a result, when T grows, fully decomposable CS would yield
a smaller mutual coherence in comparison to KCS with a high
probability asymptotically approaching 1.

Subsequently, we extend this result to the cases with E ≥ 2.
Considering that KCS adopts identity sampling matrix I for
each dimension with i = 2, . . . , E. We can obtain similar results
to E = 2. Supposing that fully decomposable CS and KCS
leverage sampling matrices Φ(F )

1 and Φ(K )
1 selected from the

N ×N orthonormal bases Φ̃1 , we can find with probability at
least 1 − 5e−τ that

μ(Φ(F )
1 ,Ψ1)

μ(Φ(K )
1 ,Ψ1)

≤
√
rN(N − 1)

1 − r
· r1CKτ log (τK logN)

× (logK)2 ,

where ri is the sampling rate for the i-th dimension and the
overall sampling rate r =

∏E
i=1 ri . Without loss of generality,

we suppose the elements of Ti × Ti orthonormal bases Φ̃i for
the i-th dimension, i = 2, . . . , E, obey a normal distribution
with zero mean and variance 1/Ti . Thus, we can obtain that

Pr

⎧
⎨
⎩
∣∣∣〈φ̃i , ψi〉

∣∣∣ ≤
[√

1 − r

r
· μ̄

r1Δ(K, τ,N)

] 1
E −1

⎫
⎬
⎭

≥ 1 − 2 exp

(
−(Ti − 2)

[
(1 − r)μ̄2

2rr2
12(K, τ,N)

] 1
E −1
)
.

Therefore, provided arbitrary E ∈ N, with the growth of Ti ,
i = 2, . . . , E, fully decomposable CS would yield a smaller
mutual coherence in comparison to KCS with a high probability
asymptotically approaching 1.

APPENDIX B
PROOF OF THEOREM 2

Considering Di = ΦiΨi for the i-th subspace Si , we rewrite
the Kronecker product for the multidimensional signals X of E

dimensions.

vec (Y) = (D1 ⊗ · · · ⊗ DE ) vec (X) . (23)

Since (A ⊗ B) · vec(X) = vec(Y) is equivalent to AXBT =
Y, Y can be obtained by multiplying X with D1 , . . . ,DE in an
arbitrary order. Without loss of generality, the sequential order is
1, . . . , E for proof. For the i-th subspaceSi , we find for arbitrary
2Ki-sparse vector ui derived from the �2,1 optimization that
Ci

1‖ui‖2
2 ≤ ‖Diui‖2

2 ≤ Ci
2‖ui‖2

2 . For the E subspaces,

E∏
i=1

Ci
1‖ui‖2

2 ≤
E∏
i=1

‖Diui‖2
2 ≤

E∏
i=1

Ci
2‖ui‖2

2 . (24)

Thus, there exists u = u1 ⊗ · · · ⊗ uE satisfying Equation (11).

APPENDIX C
PROOF OF THEOREM 3

When optimizing the Lagrangian cost function for sampling
rate, the upper bound for recover error would be minimized.
Given smooth wavelet bases Ψi , since sensing matrix optimiza-
tion is separately performed for theE dimension, we can obtain
for the i-th dimension with i = 1, . . . , E [24]

‖x(i) − x̂(i)‖2 ≤ Ci

(
Mi√

Ni · μ(Φi ,Ψi)

)−( 1
2K i

+ 1
4 )

.

Here, we assume that the multidimensional signal X is Ki-
sparse for the i-th subspace Si in the fully decomposable CS
model. Considering that ‖X − X̂‖2 = ⊗E

i=1‖x(i) − x(i)‖2 , we
have

‖X − X̂‖2 ≤
E∏
i=1

Ci

(
Mi√

Ni · μ(Φi ,Ψi)

)−( 1
2K i

+ 1
4 )

.

Since the sparsity K = max (k1 , . . . , kE ), we can obtain for
constant C =

∏E
i=1 Ci ,

‖X − X̂‖2 ≤ C

(
M√

N
∏E

i=1 μ(Φi ,Ψi)

)−( 1
2K + 1

4 )

.

Considering mutual coherence for Si , we can find that

μ (Φi ,Ψi) ≥
√

Ni −Mi

Mi(Ni − 1)
=

√
1 − ri

ri(Ni − 1)
.

Therefore, we can obtain that

‖x − x̂‖2 ≤ C

⎛
⎝N

E∏
i=1

ri ·
√

(Ni − 1)
Ni

· ri
1 − ri

⎞
⎠

−2
∑E

i= 1
1
K i

.

(25)
When fixing the overall sampling rate by r =

∏E
i=1 ri , there

exists ri , i = 1, . . . , E to minimize the recovery error.
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